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The geometric properties are quantified for concentration iso-surfaces of a high-
Schmidt-number passive scalar field produced by an iso-kinetic source with an initial
finite characteristic length scale released into the inertial layer of fully developed open-
channel-flow turbulent boundary layers. The coverage dimension and other measures
of two-dimensional transects of the passive scalar iso-surfaces are found to be scale
dependent. The coverage dimension is around 1.0 at the order of the Batchelor length
scale and based on our data increases in a universal manner to reach a local maximum
at a length scale around the Kolmogorov scale. We introduce a new parameter called
the coverage length underestimate, which demonstrates universal behaviour in the
viscous–convective regime for these data and hence is a potentially useful practical
tool for many mixing applications. At larger scales (in the inertial–convective
regime), the fractal geometry measures are dependent on the Reynolds number,
injection length scale, and concentration threshold of the iso-surfaces. Finally, the
lacunarity of the iso-surface structure shows that the instantaneous scalar field is
most inhomogenous around the length scale corresponding to the Kolmogorov scale.

1. Introduction
Mixing and transport of passive scalars in turbulent shear flows are important

processes occurring in many natural and engineered environments. From a spatial
perspective, the instantaneous passive scalar field appears as regions of clear and dyed
fluid (or unmixed and mixed fluid). Interfaces between these fluid regions, defined
by a scalar threshold value, are typically characterized as convoluted, folded and
wrinkled surfaces (e.g. Catrakis 2000). The geometry of the interfacial surface has
significant practical importance in a number of applications. First, in non-reactive
mixing processes, the molecular diffusive flux occurs across concentration gradients at
interfaces (e.g. Sreenivasan et al. 1989; Schumacher & Sreenivasan 2005). Estimating
the resulting mixing rate is necessary, for example, for predicting the dilution of
pollutants into the atmosphere or the discharge of wastewater into a stream. Secondly,
in reactive mixing, the reaction rate depends on the size and shape of the interface (e.g.
Pope 1988). Examples include combustion chambers in vehicles or power plants and
reactors in chemical engineering processes. Thirdly, electromagnetic and acoustic wave
propagation in fluids is influenced by interfacial structure (Freund 2001; Fitzgerald &
Jumper 2004). Because the wave speed commonly changes across interfaces, passing
waves are subject to refraction and reflection. This effect is encountered in aero-optic
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Figure 1. Dye visualization of the plume at Re =10 000 with a nozzle diameter of
Dnozzle = 4.7 mm.

and aero-acoustic applications, for example in earth-based astronomy and for aircraft
noise control.

The objective of the current study is to characterize interfacial surfaces of high-
Schmidt-number passive scalar fields using fractal geometric measures and examine
the relationship between these measures and the large-scale characteristics of the field.
The fractal geometry of interfaces in turbulent flows has been investigated since the
fundamental suggestions of Welander (1955) and Mandelbrot (1975). Several early
papers suggested that the fractal dimension of scalar iso-surfaces was a constant value
over the scales of the inertial–convective range (e.g. Sreenivasan & Meneveau 1986;
Prasad & Sreenivasan 1990; reviewed by Sreenivasan 1991). In contrast, Miller &
Dimotakis (1991) found that the fractal dimension in turbulent jets depended on the
spatial scale and concentration threshold. Similarly, Frederiksen, Dahm & Dowling
(1996, 1997) showed that for one-dimensional transects, a constant fractal dimension
(estimated at 0.48) existed for the viscous–convective range, whereas the dimension
depended on scale for length scales larger than the Kolmogorov scale. For planar and
three-dimensional transects of the passive scalar iso-surfaces, there was no evidence
of a constant fractal dimension. Further, Villermaux & Innocenti (1999) observed
that the fractal dimension depends on scale and also varies with time, injection scale
and concentration threshold. Table 1 summarizes these studies, including the specific
fractal dimension observations.

To describe the fractal geometry of passive scalar iso-surfaces in turbulent jets more
fully, Catrakis & Dimotakis (1996, 1998) introduced additional fractal measures, such
as the coverage fraction, scale distribution probability density function (PDF), scale-
dependent area-volume fraction, and largest empty box (LEB) scale PDF. The fractal
dimension was found to be a function of scale for the data collected. A Poisson or
log-normal distribution was suggested as a model for the scale distribution PDF.
Based on the LEB scale PDF, Catrakis (2000) characterized folding (large-scale
process) and wrinkling (small-scale process) via dimensionless numbers for passive
scalar iso-surfaces in a turbulent jet.

Although a constant fractal dimension over the inertial–convective regime was
initially believed to exist, Catrakis, Aguirre & Ruiz-Plancarte (2002) argued that,
unlike the energy spectra, the fractal dimension at a given length scale depends on
all larger length scales. Therefore, large-scale anisotropy masks the constant fractal
dimension, even if it exists. As an alternative, the scale-local area–volume density was
defined to represent better the classical inertial–convective model in physical space.
Catrakis et al. (2002) found that the area–volume density exhibited self-similarity in
the inertial–convective range with a power law exponent of 1.3. Apparently, the area–
volume density demonstrated direct manifestations of self-similarity in physical space.

Our objective is to examine the geometry of passive scalar iso-surfaces with respect
to the injection length scale (characteristic initial filament size) and Reynolds number.
Figure 1 shows an example dye visualization of the studied passive scalar fields. The
scalar field shown is a non-buoyant plume introduced iso-kinetically into a turbulent
boundary layer. The time-averaged and fluctuating characteristics of similar plumes
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Measurement Measurement Scale-dependent
Study Flow Re Flow scales dimensions resolution coverage dimension?

Sreenivasan & Boundary layer – – – – No
Meneveau (1986) Axisymmetric jet D in the range 2.32

Plane wake to 2.40
Mixing layer

Sreenivasan et al. Axisymmetric jet 4000 – Two spatial dimensions 150 µm × 150 µm × No
(1989) 250 µm Dave = 1.35 ± 0.05

Prasad & Axisymmetric jet 4000 η ≈ 150–160 µm Dual two spatial 450 µm × 450 µm × 200 µm No
Sreenivasan (1990) Cylinder wake 1500 ηB ≈ 4 µm dimensions Dave = 1.35 ± 0.05

Miller & Axisymmetric jet 2940– Smallest scalar Time 80 µm × 80 µm × Yes
Dimotakis (1991) 23 400 scales ≈ η ≈ 50– 80 µm 0 < D < 1

250 µm

Catrakis & Axisymmetric jet 4500 – Two spatial dimensions 420 µm × 420 µm × Yes
Dimotakis (1996) 9000 300 µm 1 < D < 2

18 000

Frederiksen et al. Axisymmetric jet 3000 Strain-limited estimate One dimensional 109 µm × 109 µm × Yes
(1996) 3700 of molecular diffusion intersections 181 µm Dave = 0.48 ± 0.12

scale ≈ 257 µm

Frederiksen et al. Axisymmetric jet 2900 Strain-limited estimate Two and three dimensional 110 µm × 110 µm × Yes
(1997) 3700 of molecular diffusion intersections 181 µm 2D: Dave = 1.28

5000 scale ≈ 257 µm 3D: Dave = 2.17

Villermaux & Point source in 6000 η ≈ 100 µm Two spatial dimensions 125 µm × 125 µm × Yes
Innocenti (1999) axisymmetric jet 300 µm

Catrakis et al. Axisymmetric jet 20000 Smallest scales ≈ Two spatial dimensions Laser sheet Yes
(2002) 500 µm + time thickness= 500 µm 2 < D < 3

Present study Point source in 5000 η ≈ 290–760 µm Two spatial dimensions 13 µm × 13 µm × Yes
boundary layer 10000 ηB ≈ 9–24 µm 80 µm

20000

Table 1. Summary of experimental studies of the geometric properties of passive scalar iso-surfaces.
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Re Reλ u∗(mm s−1) η(µm) ηB (µm) ε(m2 s−3) d〈U〉/dy(s−1) u′(mm s−1)

5000 60 3.25 760 24 3.0×10−6 0.18 5.3
10000 90 6.4 420 13 3.3×10−5 0.38 11.8
20000 120 10.6 290 9 1.4×10−4 0.70 19.1

Table 2. Flow characteristics. The d〈U〉/dy and u′ values correspond to the nozzle elevation
location. The turbulent kinetic energy dissipation rate was based on scaling estimates of the
turbulence intensity and integral length scale. The integral length scale of the velocity and
concentration fields were roughly 50 mm and 2 mm, respectively. The Kolmogorov scale was
estimated as η ≈ (ν3/ε)1/4, and the Batchelor scale was estimated as ηB ≈ (ν Γ 2/ε)1/4. The
Taylor scale was estimated from the isotropic relationship of λ≈ (15νu′2/ε)1/2.

have been reported by Fackrell & Robins (1982), Crimaldi, Wiley & Koseff (2002), and
Webster, Rahman & Dasi (2003). The local plume structure depends on hydrodynamic
conditions, specifically the mean concentration gradient, large-scale intermittency,
initial length scale, and Reynolds number. The concentration field produced by a
leaky or iso-kinetic release in a turbulent flow is less dense with structure and more
intermittent than the field produced by high-momentum jets, which are the subject
of many of the studies in table 1. Specifically, the studied fields are sparse and
intermittent when the injection length scale is within an order of magnitude of the
Kolmogorov scale. Although the influence of the scalar injection length scale has been
studied in the context of the cascade-bypass phenomenon (Villermaux, Innocenti &
Duplat 2001), its effect on the geometry of concentration iso-surfaces is not established
and is a focus of this study.

2. Experiment and flow description
The scalar field was measured downstream of a continuous iso-kinetic nozzle

release of Rhodamine 6G solution, a high-Schmidt-number passive scalar (Sc ≈ 1250;
Crimaldi & Koseff 2001), into the inertial layer of a turbulent boundary layer.
The resulting scalar field was statistically stationary in time and possessed spatial
gradients of both the mean concentration and velocity fields. The flow was a gravity-
driven turbulent uniform-depth open-channel flow in a 24.4 m long and 1.07 m wide
rectangular channel tilting flume with a smooth bed. Water was supplied to the
flume head box from the laboratory constant-head tank. The head box of the flume
contained stilling devices (i.e. a wood baffle and two expanded-metal screens covered
with a synthetic geotechnical fabric) to minimize large-scale flow perturbations. The
resulting flow entering the channel was laterally uniform with low turbulence intensity
and minimal surface perturbation.

Experiments were conducted for three Reynolds numbers of 5000, 10 000 and 20 000
based on the bulk velocity and flow depth (see table 2). For each case, the bed slope
and the height of the tailgate were adjusted to create an open-channel flow of depth
100 mm (uniform to within ±0.3 mm for 15 m upstream of the measurement location).
The boundary layer was fully developed at the measurement location, which was 23 m
downstream of the inlet.

Detailed velocity measurements were obtained via particle tracking velocimetry
(PTV) (method described in Dasi 2004). For each Reynolds number, the mean velocity
and turbulent stress characteristics agreed well with previous turbulent boundary-layer
studies (figure 2). The wall shear velocities, u∗, were 3.25, 6.4 and 10.6 mm s−1 for the
respective Reynolds-number cases. The normalized mean velocity profiles agreed well
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Figure 2. Profiles of the normalized (a) mean and (b) root mean square of the streamwise
velocity for Re =5000 (�); 10 000 (�); 20 000 (�). The momentum thickness Reynolds numbers
are 540, 1200 and 1880, respectively. The solid line in (a) indicates the viscous sublayer
(u+ = y+) and log layer (u+ = (1/κ)ln y+ + C, κ = 0.41, C = 5.5) profiles. In (b), the data are
compared with the experimental data by Tachie et al. (2003) (�) for Reθ =1450 and the DNS
data by Spalart (1988) (——) for Reθ =1410.

with the viscous sublayer, buffer layer and logarithmic layer. The Reynolds stress
profiles also agreed well with measurements of Tachie, Balachandar & Bergstrom
(2003) and DNS results of Spalart (1988) for similar Reθ (figure 2).

The plume was released through a brass nozzle aligned with the centreline of the
flume and pointed in the downstream direction parallel to the flume bed. Three brass
nozzles were employed with inner orifice diameters of Dnozzle = 2.2, 4.7 and 9.4 mm to
study the effect of the initial length scale. The centre of each nozzle orifice was at an
elevation of 50 mm above the flume bed. To minimize the wake perturbation, each
nozzle was custom-built with a streamlined fairing. The release velocity matched the
ambient flow to produce an iso-kinetic release. In this manner, the mixing process
was decoupled from the evolution of the velocity field, and in this regard the current
study is most similar to that of Villermaux & Innocenti (1999).

Figure 3 shows the schematic of the experimental set-up for the high-resolution
planar laser-induced fluorescence (PLIF) technique used to measure the passive scalar
field. A laser sheet in the vertical plane along the centreline of the flume was created
via scanning mirrors. The laser source was an argon-ion laser (5 W) with a wavelength
of 514 nm. A combination of a 6× beam expander and 2 m focal length lens focused
the beam to a 1/e2 waist diameter equal to 80 µm at an elevation of 50 mm
above the flume bed (corresponding to the mid-depth of the flow). The Rayleigh
length corresponding to this configuration was 20 mm. Thus, the beam waist was
approximately 80 µm throughout the image region. Although the beam waist exceeded
the Batchelor length scale (table 2), it was confirmed via spectral analysis of the
LIF images that the resolution affected the spectral energy for higher wavenumbers,
whereas the mid-range of the viscous–convective regime was resolved (Dasi 2004). A
clear 190 mm × 100 mm Plexiglas sheet was suspended just above the water surface
with the lower surface wetted to allow the laser beam to enter the measurement region
without optical distortion due to small water surface perturbations. The Plexiglas
sheet made contact with the water surface only by surface tensile forces. The scanning
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Figure 3. Schematic of the experiment set-up for concentration measurements via planar
laser-induced fluorescence (PLIF).

mirror system consisted of two mirrors, each mounted on a galvanometer (Cambridge
Technology) positioned above the water surface. The voltage signal that controlled the
mirror position was generated by a National Instruments multifunction input/output
board. The scan time of 3 ms ensured sufficient illumination of the tracer field while
minimizing the horizontal distortion of the dye filaments due to advection to less
than 3 % for the fastest flow Re = 20000). The distortion was less for the slower-flow
cases with a maximum of 1.5 % and 0.75 % for Re = 10 000 and 5000, respectively.

The image acquisition camera was a 12-bit CCD camera with 1392 × 1024 pixels
(LaVision). A 200 mm Nikon MicroNikkor macro lens was used to provide a
magnification of approximately 13 µm/pixel, which nearly matches the Batchelor
length scale at the largest Reynolds number. The image field covered approximately
18 mm × 13 mm in the vertical laser sheet plane along the nozzle centreline. The data
collection was conducted at a rate of 10 f.p.s. For each data record, 12 000 consecutive
images were captured. Data were collected at six downstream distances from the
source: H , 2.5H , 5H , 10H , 20H and 40H , where H = 100 mm is the flow depth.

Calibration involved capturing a series of images for uniform concentration fields
in the range 0–100 µg l−1. The average intensity was calculated for each pixel from
200 realizations, and the field was corrected for laser attenuation due to the presence
of Rhodamine 6G (Ferrier, Funk & Roberts 1993). A least-squares regression yielded
the calibration relationship for each individual pixel. Concentration measurement
uncertainty resulted from errors in the concentration of the calibration fluid and errors
due to digitization by the camera. Combining these considerations yielded a bound on
the error for the concentration measurements of ±4 %. This is a conservative estimate
that most directly relates to lower concentration values, whereas higher concentration
measurements had a lower uncertainty.

Figure 4 shows two samples of the high resolution concentration fields. In general,
the passive scalar field evolved owing to the stretching and folding action of the
fluctuating velocity field. The filament of dye was advected downstream by the mean
flow, while being dispersed in all directions by the velocity fluctuations. The scalar
field thus generated was continuously–connected and only appeared as disconnected
sheets in the measured two-dimensional transects of the field. The effect of molecular
diffusion played a minimal role in the development of the large-scale plume structure.
However, molecular diffusion was critically important to the mixing process because



High-Schmidt-number passive scalar iso-surfaces 259

0.05

(a)

(b)

0

–0.05

y
–
H

Θ/Θ0: 0 0.2 0.4 0.6 0.8 1.0

0.9 1.0 1.1

0.05

0

–0.05

y
–
H

Θ/Θ0: 0 0.002 0.004 0.006 0.008 0.01

39.9 40.0 40.1
x/H

Figure 4. Sample concentration fields at (a) x =H and (b) 40 H . Data shown for
Re = 10 000 and Dnozzle = 4.7 mm.

it acted to dilute the filament concentration locally and limited the development of
structure below the Batchelor length scale. The sparse filament structure shown in
figure 4 is qualitatively different from that observed for turbulent jets (e.g. Villermaux
& Innocenti 1999; Catrakis 2000). For the case of turbulent jets, clear fluid was
entrained into the initially homogenous jet core, which led to less sparse (and less
intermittent) concentration fields.

3. Data analysis
Concentration iso-surfaces for defined threshold levels were extracted for the

512 × 512 pixel array near the centre of the image (figure 4b) using the boundary
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outline pixel methodology. This sub-region (bounding box) was analysed because
the mean concentration gradient (∂〈Θ〉/∂y) was constant in this region of the field.
The uniform mean concentration gradient region was preferred to ensure that
large-scale characteristics of the concentration field are uniform throughout the
bounding box. Concentration iso-surfaces corresponding to three thresholds were
extracted for each image. The threshold concentration, Θth(m), corresponds to m

times the local concentration standard deviation above the local mean concentration
(i.e. Θth(m) = 〈Θ〉 + m〈θ2〉1/2), where m was chosen to be 3, 5 and 7. The local
mean corresponds to the ensemble average of 12 000 realizations of the spatially
averaged value for the bounding box region. The range of concentration thresholds
was bounded owing to noise and limited sample size of the data sets. Because of
the intermittent nature of the plume, the local mean concentration was orders of
magnitude lower than the peak instantaneous concentration. The signal-to-noise
ratio of pixel intensities corresponding to concentrations lower than the local mean
were poor and therefore limited the range of thresholds to be greater than the
mean concentration. Also, for m > 7, only a small number of images contained an
iso-surface, which prevented statistically converged measures.

Schuerg (2003) tested several iso-surface extraction methods and concluded that the
boundary-outline pixel approach is the superior method. A primary advantage of the
boundary-outline pixel method is that it eliminates the asymmetry between identifying
‘islands’ and ‘lakes’ in the field. The methodology considered the concentration of a
pixel (called the ‘centre pixel’). If the concentration of the centre pixel was greater
than or equal to the threshold concentration, then the surrounding eight pixels were
examined for threshold crossings. A neighbouring pixel with a concentration below
the threshold indicated a crossing between that pixel and the centre pixel. A linear
interpolation of the concentration between the two pixels was used to calculate the
location of the crossing. The pixel closest to the crossing was flagged as a boundary
outline pixel. If the location was exactly halfway between the two pixels, then both
pixels were flagged as the boundary outline pixel. This methodology was used for
every pixel in each image to generate the iso-surface for the defined concentration
threshold. The outcome was a binary image consisting of the iso-surface.

Figure 5 provides a qualitative picture of the temporal and spatial evolution of
the passive scalar iso-surfaces. The figure corresponds to the iso-surfaces extracted
from 16 consecutive images for the concentration threshold Θth(m) = 〈Θ〉 + 〈θ2〉1/2

(i.e. m = 1 for demonstration) at the farthest downstream distance for the case of
Re = 10 000 and Dnozzle =4.7 mm. Note that figure 5(vii) corresponds to the field
shown in figure 4(b). Although not shown here, the scalar structure appears to be
more stretched and thinner as distance from the source is increased. The iso-surfaces
appear randomly located in space and time with a shape that is impossible to describe
with traditional tools of Euclidian geometry. Also, the iso-surfaces generally occupy
only a small portion of the bounding box. The convoluted nature of the iso-surfaces
represents structure over a large range of scales from the Batchelor scale to the scale
of the bounding box. The scalar iso-surfaces possess structure at larger scales, but
we examine only the geometry within the equilibrium range (i.e. from the Batchelor
scale to the inertial–convective range). Another important observation is that the
iso-surface structure is visually unlike the passive scalar iso-surfaces generated by a
high-momentum jet (e.g. Catrakis & Dimotakis 1996). The iso-surface structure in
the present study is sparse without obvious whorls or saddle structures.

The box-counting algorithm was applied to a boundary-outline pixel image and
extracted values of the coverage count as a function of length scale, λ. The algorithm
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Figure 5. The first 16 consecutive samples from the set of 12 000 boundary-outline images
at x =40 H for a concentration threshold of Θth(m) = 〈Θ〉 + m〈θ2〉1/2, where m= 1 for
demonstration. For every image the streamwise direction is from left to right.

started with a bounding box with a characteristic side scale, δb, defining the largest
considered scale. The bounding box was successively subdivided into an increasing
number of boxes of smaller size, until the boxes reached pixel size; hence the
consecutive box sizes were λ= 512, 256, 128, 64, 32, 16, 8, 4, 2 and 1 pixels. At each
subdivision step, the algorithm counted the number of boxes that contain part of the
iso-surface, which yielded the coverage count, N (λ), at the particular length scale.
Following the recommendation of Miller & Dimotakis (1991), the starting position
of the subdivision was shifted to eight starting locations in each coordinate direction.
Thus, for each box size, λ, we shifted the grid to 8 × 8 =64 different locations. For
the smallest scale of 1 pixel, only one position with the shifting grid was possible. For
the second-smallest subdividing box, there were 2 × 2 = 4 possible shifting positions,
and so on. Of course, it does not make sense to shift the grid for the largest length
scale. Some boxes shifted past the boundaries of the image. In such circumstances,
we artificially connected the left-hand image boundary to the right-hand one, and
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the upper image boundary to the lower one. As discussed in the next section, other
fractal measures were calculated based on the coverage count results. The results were
ensemble-averaged over the full record of images.

There is an important issue associated with applying the box-counting algorithm
owing to the sparseness of the iso-surface structure. When ensemble-averaging over
a number of images, completely empty images decreased the coverage count, but
did not contribute any information for the coverage dimension. One option was to
exclude such images from the ensemble calculations. As the bounding box size was
an arbitrary length scale within the field, we could argue that smaller empty regions
within the images should also be left unconsidered. One way to do this was to neglect
the coverage count of images down to length scales where the iso-surface structure
occupied more than one of the subdividing boxes. This corresponded to an adaptation
of the bounding box to the largest iso-surface structure present within a particular
image. We investigated the impact of rejecting empty regions on the various fractal
measures. On the one hand, this approach seemed to improve the performance of the
algorithm in reproducing the exact fractal dimension of synthetic objects (discussed
below). On the other hand, it discarded an essential characteristic of the flow field,
i.e. the sparseness of the iso-surface structure. We concluded that the physics of the
field were represented most accurately when the empty regions were included. Thus,
we consistently used the full size of the initial bounding box.

Before analysing the fractal characteristics of the passive scalar iso-surfaces, it was
necessary to validate the numerical method by evaluating the performance when
applied to deterministic self-similar fractal objects of known theoretical dimension.
This is particularly true for the current data set in which the largest scales in the
field were much larger than our bounding box. We created fractal objects with the
same range of scales, and extracted 512 × 512-pixel-sized images from these objects.
In addition to general validation of the numerical method, the evaluation image
sets allowed us to investigate the influence of several parameters on the algorithm
accuracy, such as the dimension, the number of shifts of the starting location, and
the adaptation of the bounding box.

Based on the examples of classical and detached Koch curves given by Mandelbrot
(1983), we developed six deterministic fractals with the dimensions D ≈ 1.0000, 1.1046,
1.2553, 1.4466, 1.6131 and 1.7604. The deterministic self-similar fractals were created
by performing the same prescribed operation (called the ‘generator’) repeatedly on a
starting object (called the ‘initiator’). In each case, a square was used as the initiator.
To introduce irregularity and asymmetry in the resulting fractal objects with varying
numbers of detached islands and lakes, we randomly picked generators from a set with
the same cumulative fractal dimension, but varying degrees of dispersion (Schuerg
2003). We matched the order of the desired scaling by selecting the proper level
of the self-similar cascade, i.e. the number of times the generator was applied. In
order to apply our algorithm to the deterministic fractal objects, it was necessary
to create boundary-outline pixel images from the array of straight lines. We first
rotated the whole fractal object by a random angle, which eliminated alignment of
the box-counting subdivisions and the object. The rotated object was scaled to fit the
resolution requirement at the smallest scale. Then, a selector square of the size of our
images (i.e. 512 × 512 pixels) was randomly located within the fractal object. The part
of the object lying within the selector square was used to create one boundary-outline
pixel image. For each of the six dimension cases, we created 1200 random objects and
extracted 10 images from each realization. Thus, a total of 12 000 evaluation images
were created for each case. While there are clear differences from the turbulence
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Figure 6. Coverage dimension calculated via the numerical method for the Koch curve objects
(closed symbols) and fBm objects (open symbols). The theoretical fractal dimension is indicated
by the thick horizontal lines over the range in which the algorithm accuracy is to be evaluated.

data because of the deterministic nature of the Koch curve test images, there are
general similarities regarding the sparseness of the fields, the arbitrary location and
orientation of the interface structure, and the fact that the interface structure extends
beyond the edge of the bounding box.

In addition, we created simulated concentration contours based on fractional
Brownian motion (fBm) and generated random evaluation sets with the same six
fractal dimensions as the Koch curves. The fBm sets were created via simulating two-
dimensional Brownian motion by implementing the random mid-point displacement
method (Peitgen, Jürgens & Saupe 1992). By adjusting the Hurst exponent, which may
vary from 0 to 1, fBm sets were produced with the desired fractal dimension. From
each fBm object, the bounding curve of the object was extracted as the representative
fBm generated iso-surface. For each of the six dimension cases, we created 12 000
random fBm objects. A randomly located 512 × 512 pixel bounding box region was
extracted from each object image for analysis. In addition to testing the code, results of
the analysis of the randomly generated fBm objects were compared to the parameters
calculated for the turbulent scalar iso-surfaces.

Figure 6 shows the coverage dimension for the Koch and fBm evaluation image
sets for six fractal dimensions. For intermediate scales, the data show a plateau
matching the theoretical dimension. The algorithm performs well on fBm sets and
Koch curves. However, fluctuations around the correct value are evident along
each plateau. According to Sreenivasan (1991), these fluctuations originate from
two sources. First, the dyadic subdivision factor of the box-counting algorithm (i.e.
1/2) generally does not correspond to the intrinsic subdivision factor of a particular
Koch curve determined by its generator or the more random fBm objects. Secondly,
the starting location of the subdivision usually does not match the starting points of
straight-line elements of the Koch curve. Errors at the boundaries of the algorithm
scaling range were reported in the literature (e.g. Miller & Dimotakis 1991; Shepherd,
Cheng & Talbot 1992; Frederiksen et al. 1996), which is consistent with the deviation
at the smallest and largest scales shown in figure 6. For the current simulated data, the
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error in the numerically determined dimension averaged over the 7-point plateau was
less than 1%. The fluctuation root mean square for those points about the expected
value was less than 5 %. Tests with these simulated images also revealed that eight
shifting locations for the start of the box-counting algorithm is the optimal balance
of benefit and computational cost. The approach of artificially connecting the left
and right boundaries for subdivided boxes that extend past the edge was found to be
superior to weighting and other schemes.

Error analysis was also performed based on the statistical behaviour of the turbulent
data set. The standard error of the ensemble average of the coverage count data was
calculated based on the standard deviation and number of samples. The estimate of
the standard error subsequently was propagated to all quantities that depend on the
coverage count. Since the lacunarity (another geometric parameter discussed) does
not follow from the coverage count, the standard error was calculated directly from
the ensemble of data. For each individual data point shown in figures 7–16, error
analysis was performed and error bars are shown. The worst case for the standard
error in coverage dimension was 6 % and for the standard error in coverage length
underestimate was 4 %.

4. Results based on the coverage count
This section describes the scalar iso-surfaces quantitatively with respect to the

coverage statistics. The primary focus is on the effects of concentration threshold,
velocity characteristics (governed by Reynolds number of the boundary-layer flow),
mean scalar characteristics (governed by distance from the source), and injection
length scale (nozzle diameter) on these measures.

The coverage count, at a given scale λ, is the number of boxes of size λ in the
grid that contain part of the scalar iso-surface within the bounding box. There are a
number of other measures based on the coverage count that yield a comprehensive
description of the fractal geometry of the iso-surfaces. These measures are collectively
called the coverage statistics, of which Catrakis & Bond (2000) provided a valuable
overview.

All of the measures in the coverage statistics are based on the discrete coverage
count, N2 (λ), generated by the box-counting algorithm. The subscript indicates the
embedding dimension, d = 2 for our planar measurements. Figure 7 shows a typical
coverage count plot for the three threshold levels. The coverage count decreases with
λ and threshold level. These trends agree with the numerical simulations of isotropic
turbulence reported by Schumacher & Sreenivasan (2005). Further, the variation with
respect to threshold level is consistent with Miller & Dimotakis (1991) and Villermaux
& Innocenti (1999) for passive scalar mixing in a jet. Also, the coverage count at
λ= δb is not necessarily unity and decreases with increasing threshold because of the
presence of empty bounding boxes. As the scale size increases and crosses over the
Kolmogorov scale (at log10(λ/δb) ≈ −1.2), the negative slope of the coverage count
distribution appears to reduce in magnitude.

The coverage dimension or box-counting dimension, defined as the logarithmic
derivative of the coverage count of the object, is given by:

Dd (λ) = −d log Nd (λ)

d log λ
. (4.1)

Although the coverage dimension is not equal to the more accurate Hausdorff–
Besicovitch dimension even for simple deterministic self-similar fractals, the literature
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Figure 7. Coverage count as a function of concentration threshold. Data plotted versus
normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at a concentration m times
the local standard deviation above the local mean, for m= 3 (�), 5 (�) and 7 (�), at x =40 H ;
for Dnozzle =4.7 mm and Re = 10 000.

mentioned in § 1, for instance, showed that it successfully captures most characteristics
of fractal objects. Equation (4.1) was implemented by central differencing.

As reported in § 1, contradicting observations exist regarding the coverage dimension
of the passive scalar iso-surfaces. Sreenivasan & Meneveau (1986) observed a constant
fractal dimension with respect to scale size, whereas Catrakis & Dimotakis (1996) and
others observed a scale-dependent fractal dimension implying a level 3 complexity
(i.e. scale dependence, as defined in Catrakis & Dimotakis 1996) of the iso-surfaces.
For reference, table 1 summarizes the coverage dimension observations of several
recent studies. Figure 8 shows the variation of the coverage dimension with respect
to the concentration thresholds applied to the passive scalar field. The coverage
dimension is scale dependent, irrespective of threshold, in contrast to figure 6
for the synthetic objects. The scale-dependent coverage dimension characteristic
is in agreement with many of the studies summarized in table 1. The coverage
dimension for all thresholds increases with scale in the viscous–convective range,
−2.7 < log10(λ/δb) < −1.2, indicating that the convolution of the iso-surfaces appears
to be more space filling. Also, the coverage dimension is less sensitive to variations
in the concentration threshold; the coverage dimension appears to be the same for
the three concentration thresholds. The majority of measurements in table 1 did not
resolve the viscous–convective regime, and hence it is impossible to assess whether
the trend observed in the current data is common to other flow geometries.

The profiles at scales larger than the Kolmogorov length scale, in contrast, are
sensitive to variations in the concentration threshold. Specifically, the coverage
dimension decreases with increasing concentration threshold. The decrease in coverage
dimension occurs because at scales larger than the Kolmogorov scale, the iso-surfaces
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Figure 8. Coverage dimension as a function of concentration threshold. Data plotted versus
normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at a concentration m times
the local standard deviation above the local mean, for m= 3 (�), 5 (�) and 7 (�), at x = 40 H ;
for Dnozzle = 4.7 mm and Re = 10 000.

are often completely inside the λ-sized box, thereby appearing as a collection of
spots. Unlike previous observations in which the bounding box covers the entire jet
flow structure, the iso-surfaces appear more and more ‘spotty’ (D2 < 1) as the size
of the boxes increases. Hence, the sparseness of the structure, especially for the larger
threshold values, leads to the observed trend for coverage dimension in the inertial–
convective range.

Figure 9 shows the variation of the coverage dimension with increasing distance
from the source for different concentration threshold levels. The coverage dimension
in the viscous–convective regime is nearly independent of downstream distance from
the source. Therefore, the coverage dimension in the viscous–convective regime is not
dependent on concentration threshold or any global characteristic of the scalar field
dependent on the downstream distance, such as the mean scalar gradient.

For scale sizes larger than the Kolmogorov length scale, the coverage dimension
varies with the global characteristics of the mean scalar field. The coverage dimension
in the inertial–convective regime decreases with increasing distance from the source.
This indicates that the iso-surfaces become more sparse with fewer clusters of structure
that tend to increase the coverage dimension. Also, the coverage dimension curves in
the inertial–convective regime for the far downstream cases vary little with distance.
Most of the variation occurs for x < 10H , suggesting that a constant state is reached
such that the characteristics of the geometry of the iso-surfaces are fixed in the
inertial–convective regime for x > 10H .

Figure 10 shows the variation of coverage dimension with Reynolds number. In
the viscous–convective regime, the coverage dimension appears to be independent of
Reynolds number, except for the lowest Reynolds number where the curve is flatter
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Figure 9(a, b). For caption see next page.

than those for higher Reynolds numbers. It can be concluded that the coverage
dimension in the viscous–convective range behaves in a universal manner even for
moderately high Reynolds numbers (Re �10 000). Note that this value is consistent
with the mixing transition identified by Dimotakis (2000) for shear layers, jets and
other flows. In the inertial–convective range, the coverage dimension for the lowest
Reynolds number is significantly lower than the other cases. This Reynolds-number
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Figure 9. Coverage dimension as a function of distance from the source. Data plotted versus
normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at a concentration m times
the local standard deviation above the local mean, for (a) m= 3, (b) 5 and (c) 7, at x = H (�),
2.5 H (�), 5 H (�), 10 H (�), 20 H (�), and 40H (�); for Dnozzle = 4.7 mm and Re = 10 000.
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Figure 10. Coverage dimension as a function of Reynolds number. Data plotted versus
normalized scale, λ/ηB , for the passive scalar iso-surface at a concentration m times the
local standard deviation above the local mean, for m= 3 (�) and 5 (�), at x =40 H ; for
Dnozzle = 4.7 mm and Re = 5000 (——), 10 000 (– – –) and 20 000 (· · ·).
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Figure 11. Coverage dimension as a function of source nozzle diameter. Data plotted versus
normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at a concentration m times
the local standard deviation above the local mean, for m= 3 (�) and 5 (�), at x = 40 H ; for
Dnozzle = 2.2 mm (——), 4.7 mm (– – –) and 9.4 mm (· · ·) and Re = 10 000.

dependence may be explained from the fact that the intermittency factor increases
with Reynolds number (Dasi 2004). This implies that the scalar field is less sparse for
higher Reynolds number, thereby increasing the coverage dimension. Note that the
coverage dimension remains below 1 in the inertial–convective range for the range
of Reynolds number. For higher Reynolds number, the coverage dimension in this
range may exceed 1, which would indicate that the iso-surfaces, although sparse, have
smoother large-scale structures.

Figure 11 shows the variation of coverage dimension with nozzle diameter.
Again, the universal behaviour in the viscous–convective regime is evident. In the
inertial-convective regime, the coverage dimension is lowest for Dnozzle =2.2 mm and
highest for Dnozzle = 4.7 mm. Because of the non-monotonic trend with nozzle size,
factors besides intermittency appear to influence the coverage dimension. Possible
influences include the shape of the PDF of the concentration fluctuations, which
also demonstrates a non-monotonic trend with nozzle diameter (Dasi 2004), and the
relative size of the release nozzle compared to the Taylor scale. In this case, the Taylor
length scale corresponds to a scale between the diameters of the middle-sized and
largest nozzles, which may lead to a fundamental shift in the mixing characteristics
(see Lück et al. 2006).

The coverage length, Ld(λ), measures the total length of the iso-surface in the
bounding box using a ruler of size λ. For the present case with d = 2, this measure
corresponds to the length of the interface boundary for the scalar field measured.
This measure is calculated as:

Ld(λ) = λdt Nd(λ), (4.2)



270 L.P. Dasi, F. Schuerg and D. R. Webster

log10(λ/δb)

log10(λ/ηB)

lo
g 1

0�
L

2�

–3
–1

–2 –1 0

0 1 2

0

1

2

3

Viscous–convective regime Inertial–convective regime

ηηB

Figure 12. Coverage length as a function of concentration threshold. Data plotted versus
normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at a concentration m times
the local standard deviation above the local mean, for x = 3 (�), 5 (�) and 7 (�), at x = 40 H ;
for D = 4.7 mm and Re = 10 000.

where dt is the topological dimension of the set and is equal to 1 for our measurements.
Note that Ld(λ) tends to the total coverage length, Ld,tot , as λ → 0. For classical fractal
objects, the total coverage length is infinity owing to self-similarity at arbitrarily small
scales. For the passive scalar field, no additional fine structure exists in the iso-surface
for λ<ηB , which results in no change in Ld(λ).

From a turbulent mixing application point of view, the coverage area L3(λ) is the
most important measure of iso-surfaces because it measures the total interfacial area
of iso-surfaces. Therefore, this measure is useful for predicting mixing efficiency or
the kinetics of reactive mixing. The coverage length, 〈L2(λ)〉, measures the average
total iso-surface length per bounding box size, δb, and hence is the lower dimensional
analogue. Figure 12 shows the coverage length in millimetres per bounding box for
different concentration thresholds. In the viscous–convective regime, the coverage
length decreases with increasing scale and the curves corresponding to different
thresholds appear nearly parallel. Above the Kolmogorov length scale, the curves
attain a local minima followed by an increase in coverage length. The increase with
increasing scale size is possible as the coverage dimension at these scales falls below
unity. Overall, the coverage length decreases with increasing threshold. This decrease
with increasing threshold can be explained in analogy to the contour lines of ‘tapered
peaks or hills’ of concentration. Increasing the threshold moves the contour up the hill
while reducing the perimeter of the contour. Notice that as λ → ηB , the coverage length
of each curve appears to be bounded (i.e. the slope of the log10〈L2(λ)〉 distribution
flattens as λ → ηB). This upper bound is the true length of the iso-surfaces whereas the
lengths measured at higher scales may be interpreted as artefacts of lower resolution.

A new coverage measure, namely the coverage length underestimate, is defined here
as:

〈L2,u(λ/δb)〉 =
〈L2,tot〉

〈L2(λ/δb)〉
. (4.3)
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Figure 13. (a) Coverage length underestimate as a function of concentration threshold.
Data plotted versus normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at
a concentration m times the local standard deviation above the local mean, for x = 3 (�),
5 (�), and 7 (�), at x = 40 H ; for Dnozzle = 4.7 mm and Re = 10 000. (b) Coverage length
underestimate for the fBm objects at dimensions D ≈ 1.0 (——), 1.1046 (– – –), and 1.2553
(– · · –).

The coverage length underestimate is essentially the ratio of the total iso-surface
length to the length as it appears at a larger scale. This measure is useful because the
coverage length underestimate shows universal characteristics similar to the coverage
dimension, and hence could be employed to correct under-resolved estimates of the
coverage length. The derivation in the Appendix shows that the coverage length
underestimate at a given scale is a function of the coverage dimension at smaller
scales.

Figure 13(a) shows the coverage length underestimate for three thresholds.
The coverage length underestimate appears independent of the threshold level in
the viscous–convective range with the individual curves deviating at and above the
Kolmogorov length scale. We evaluated the coverage length underestimate for fBm
sets with coverage dimension in the same range as the turbulent iso-surface data, and
figure 13(b) reveals that the underestimate increases rapidly with increasing scale for all
three object sets. Whereas the length of the passive scalar iso-surfaces may be at most
incorrect by a factor of 2, the length estimation may be underestimated by a much
larger factor at coarse scales for the fBm sets. The comparison again demonstrates
the unique characteristics of the turbulent iso-surface data compared to random
synthetic objects. For the turbulent iso-surface data, the trends with downstream
distance, Reynolds number and nozzle diameter are similar to those reported above
for the coverage dimension. In particular, the coverage length underestimate appears
universal in the viscous–convective regime and demonstrates similar dependence in
the inertial–convective regime as observed for the coverage dimension.

Catrakis et al. (2002) proposed an area–volume ratio, Ω3(λ), as the ratio of the
total interfacial area normalized by the volume of the bounding box to the 2/3rd
power. The total interfacial area is estimated as L3(λ) = λ2N3(λ) and the volume of
the bounding box is equal to δ3

b . This quantity is generalized to other embedding
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Figure 14. (a) Scale–local length–area density as a function of concentration threshold.
Data plotted versus normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at
a concentration m times the local standard deviation above the local mean, for m= 3 (�), 5
(�) and 7 (�), at x = 40 H ; for Dnozzle =4.7 mm and Re = 10 000. (b) Scale–local length–area
density for the fBm objects at dimensions D ≈ 1.0 (——), 1.1046 (– – –) and 1.2553 (– · · –).

dimensions, for d � 2, by the following relationship:

Ωd(λ) =
λdt Nd(λ)(
δd
b

)dt /d
=

(
λ

δb

)dt

Nd(λ). (4.4)

For our data the embedding dimension is d = 2, thus this measure is interpreted as the
length–area ratio and is qualitatively the same as the coverage length per bounding
box area (i.e. figure 12). As described in Catrakis et al. (2002) (for d =3), the scale–
local length–area density, gd(λ) = −dΩd(λ)/dλ, and its exponent, αg(λ), are the slope
of the scale–cumulative length–area ratio curve and the logarithmic derivative of the
scale-local length–area density, respectively. g2(λ) is interpreted as the contribution to
Ω2(λ) from the local features of the object structure at scale λ.

Note that g2(λ) is negative when the coverage dimension is less than the topological
dimension, which occurs for the scalar field in the present study owing to the
intermittency or ‘spottiness’ of the fields at larger scales. The significance of αg(λ) is
that it corresponds to the local fractal dimension of the structure at the scale λ and
is a better measure (than coverage dimension) to detect self-similarity of turbulent
iso-surface structure in the inertial–convective regime (Catrakis et al. 2002). Catrakis
et al. (2002) reported that the ‘fractal dimension at the local scale’ was constant at
αg = 1.3 in a narrow range of scales that correspond to the inertial–convective regime.

Figure 14(a) shows the scale–local length–area density for three concentration
thresholds. The scale–local contribution to the scale–cumulative length–area ratio
is dominated by complexity in the viscous–convective regime, and the contribution
decreases with increasing scale. Above the Kolmogorov length scale (log10(λ/
δb) ≈ −1.2), the contributions for the higher thresholds are negative because of the
coverage dimension falling below the topological dimension (see figure 8). These
negative data points are not shown in the logarithmic plot. Overall, 〈g2 (λ)〉 decreases
with increasing threshold. For the fBm sets, 〈g2 (λ)〉 decreases with increasing scale
and approaches a power law decay consistent with the behaviour of a self-similar
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Figure 15. (a) Scale–local length–area density exponent as a function of concentration
threshold. Data plotted versus normalized scales, λ/δb and λ/ηB , for the passive scalar
iso-surface at a concentration m times the local standard deviation above the local mean, for
m= 3 (�), 5 (�) and 7 (�), at x = 40 H ; for Dnozzle = 4.7 mm and Re = 10 000. (b) Scale–local
length–area density exponent for the fBm objects at dimensions D ≈ 1.0 (——), 1.1046 (– – –)
and 1.2553 (– · · –).

fractal (figure 14b). Hence, the contribution at scales larger than the Kolmogorov
scales for the fBm sets particularly contrasts with the contribution for the turbulent
iso-surfaces.

Figure 15(a) shows the exponent 〈αg (λ)〉 for three threshold values. Catrakis
et al. (2002) did not define αg (λ) for coverage dimensions less than the topological
dimension. As a result, for the data shown in figure 15(a) the higher threshold levels
yield undefined 〈αg (λ)〉 in the inertial–convective regime. However, 〈αg (λ)〉 fluctuates
around a value of approximately 0.8 in the viscous–convective regime. We note here
that plots (not shown) of 〈αg (λ)〉 variation with downstream distance, Reynolds
number, and nozzle diameter do not indicate self-similarity in the inertial–convective
regime (i.e. for log10(λ/δb) > −1.2). The only range where the exponent is close to a
constant value is in the viscous–convective range. Further, the constant appears to
decrease with increase in Reynolds number. Although Catrakis et al. (2002) reported
a constant value of 1.3, it is clear from the current data that this value is not universal.
Figure 15(b) shows the exponent 〈αg (λ)〉 for the fBm sets approaching a constant
value that depends on the fractal dimension of the objects, which is again consistent
with a self-similar behaviour. The results again strongly contrast with the turbulent
iso-surface data for larger scales.

5. Lacunarity
Mandelbrot (1983) presented the measure of lacunarity to address the elusive

notion of texture by quantifying the deviation of an object from translational
invariance. Lacunarity distinguishes objects that have the same fractal dimension,
but different levels of regularity or homogeneity. Plotnick et al. (1996), among others,
used lacunarity to describe patterns occurring in several examples in natural systems.
Lacunarity has considerable significance from the point of view of turbulent mixing
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Figure 16. (a) Lacunarity as a function of concentration threshold. Data plotted versus
normalized scales, λ/δb and λ/ηB , for the passive scalar iso-surface at a concentration m times
the local standard deviation above the local mean, for m= 3 (�), 5 (�) and 7 (�), at x = 40 H ;
for Dnozzle =4.7 mm and Re = 10 000. (b) Lacunarity for the fBm objects at dimensions D ≈ 1.0
(——), 1.1046 (– – –) and 1.2553 (– · · –).

of passive scalars. For instance, lacunarity is a sensitive measure of deviation from
local homogeneity, in contrast to the scaling regimes in the spectra that assume local
statistical homogeneity. In this section, we examine the lacunarity of the concentration
iso-surfaces in order to describe the homogeneity of the extracted surfaces. As
described below, lacunarity is readily calculated as a function of scale.

Lacunarity is defined as the ratio of the second moment to the square of the
average of the spatial mass-distribution function of any set (Allain & Cloitre 1991)
and is not directly related to the coverage count. The gliding-box algorithm is used
to generate the mass distribution function for a given scale size, λ. In this algorithm,
a box of size λ glides across the set, sequentially residing in all possible positions.
The number of pixels in the gliding box that contain any part of the iso-surface is
defined as the mass of the gliding box. As the gliding box takes all possible positions
in the bounding box, the mass fluctuates according to the spatial distribution of the
set. The PDF of these fluctuations is the mass-distribution at scale size λ, pdfλ (m).
The lacunarity at scale size λ is thus defined as:

Λ(λ) =

∫ ∞

m=0

m2pdfλ(m) dm

(∫ ∞

m=0

m pdfλ(m)dm

)2
= 1 +

σ 2
m

µ2
m

, (5.1)

where σ 2
m is the variance and µm is the mean of the mass-distribution function. A

lacunarity value of 1 indicates homogeneity, whereas larger values indicate spatial
in-homogeneity.

Figure 16(a) shows the lacunarity function for three concentration thresholds.
From the minimum value at scales just larger than the Batchelor-scale, the lacunarity
increases with increasing scale through the viscous–convective regime. For scales larger
than the Kolmogorov length scale, the lacunarity decreases. Increasing lacunarity
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corresponds to increasingly patchy structure, therefore it can be concluded that the
iso-surfaces viewed at the viscous–convective scales are highly irregular and decrease
in homogeneity with increasing scale up to the Kolmogorov length scale. The figure
also shows that the structure is most inhomogenous around the Kolmogorov length
scale. In contrast, the behaviour of lacunarity for the fBm objects (figure 16b) appears
as a monotonic power law decay with increasing scale. Again, this demonstrates
the unique characteristics of the turbulent iso-surface data compared to that of
random synthetic objects. Overall, the lacunarity (and inhomogeneity) increases
with increasing concentration threshold (figure 16a). Further, the steepness of the
decrease in lacunarity in the inertial–convective range increases with threshold. The
lacunarity curves qualitatively were similar for the cases of varying downstream
distance, Reynolds number and nozzle diameter. We note that lacunarity was observed
to increase with downstream distance for all three threshold levels, indicating an
increasingly inhomogeneous field with downstream distance. Also the lacunarity
decreased with increasing Reynolds number and nozzle diameter suggesting a more
homogeneous field at higher Reynolds number and larger source diameter.

6. Conclusions
Passive scalar iso-surfaces were analysed by the box-counting algorithm to

generate scale-dependent coverage statistics of the iso-surfaces including the coverage
dimension. These results have been compared to the coverage statistics of simulated
iso-surfaces represented by fractional Brownian motion. The fractal measures of the
passive scalar iso-surfaces were found to be scale dependent with level 3 complexity
and clearly do not resemble the fractal characteristics of fBm sets in agreement with
Frederiksen et al. (1997). Based on our data, we find that the coverage dimension varies
with scale in a universal form in the viscous–convective range. The coverage length
underestimate reflects this universal behaviour and forms an important measure for
practical applications. Specifically, we may estimate the true interfacial length based on
the variation of the coverage length underestimate in the viscous–convective regime.
Estimating the interfacial length is important in many applications such as reactive
and non-reactive mixing, aero-optics and aero-acoustics. The universal behaviour in
this context relates to the common trends observed with varying Reynolds number,
source nozzle size, concentration threshold of the iso-surface, distance from the
source, and local mean scalar gradient. Additional data and comparisons are required
in order to evaluate whether these trends are more broadly universal. The lacunarity
of the iso-surfaces increases with scale in the viscous–convective regime, which
suggests increasing inhomogeneity. The fluctuating iso-surfaces appear to be most
inhomogeneous around the Kolmogorov length scale shown by the local maximum
of lacunarity.

The authors gratefully acknowledge the financial support of the National Science
Foundation (CTS-0303406).

Appendix. Derivation of the coverage length underestimate
The coverage length underestimate and coverage dimension are connected by the

following relationships. The scale–local area–volume density is defined as (Catrikis
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et al. 2002):

gd(λ) ≡ −dΩd(λ)

dλ
=

Ωd(λ)

λ
(Dd(λ) − dt ), (A 1)

where Ωd(λ) is the scale–cumulative area–volume ratio. Divide (A 1) by Ωd,tot to yield:

− d

dλ

(
Ωd(λ)

Ωd,tot

)
=

Ωd(λ)

Ωd,tot

(Dd(λ) − dt )

λ
. (A 2)

Observe that the coverage length underestimate is related to the area–volume ratio
as:

Ld,u ≡ Ld,tot

Ld

=

(
λdt

λdt

)
Nd,tot

Nd

=

(
λdt /δb

λdt /δb

)
Nd,tot

Nd

=
Ωd,tot

Ωd

(A 3)

and substitute to yield:

1

Ld,u

d

dλ
(Ld,u) =

(Dd(λ) − dt )

λ
. (A 4)

Integrate over the interval 0 to λ to produce the relationship between the coverage
length underestimate and coverage dimension:

ln(Ld,u(λ)) − ln(Ld,u(0)) =

∫ λ

0

1

λ̃
(Dd(λ̃) − dt ) dλ̃ (A 5)

Ld,u(λ) = exp

(∫ λ

0

1

λ̃
(Dd(λ̃) − dt ) dλ̃

)
(A 6)

Equation (A 6) is integrable in the given limits as gd(λ → 0) = 0 (Catrakis et al.
2002). From (A 6), it is clear that a universal variation of the coverage dimension
in the viscous–convective regime corresponds with universal behaviour of the
coverage length underestimate. The practical usefulness is that the coverage length
underestimate can be employed to correct under-resolved estimates of the coverage
length.
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